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Abstract

]

The preconditioned conjugate gradient (PCG) method is an
effective means for solving Systems of linear equations where
the coefficient matrix is symmetric sand positive definite.

The incomplete LDﬁ%Afactorizations are a widely used class of
preconditionings, including the SSOR, Dupont-Kendall-Rachford,
Generalized SSOR, ICCG(0), and MICCG(0) preconditionings. The

efficient implementation of PCG with a preconditioning from

this class is discussed.
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1. Introduction
Consider the system of N linear equations
(1) Ax=b,

wvhere the coefficient matrix A is symmetric and positive definite. When A is
large and sparse, the preconditioned conjugate gradient (PCG) method is an
effective means for solving (1) [2, 4, 5, 9, 13]. Given an initial guess Xg

we generate a sequence {xk} of approximations to the solution x as follows:

=y =b - A%

(2a) Py 0 0

(2b) Solve Mro =1

Access{;5 “ar
FOR k = 0 STEP 1 UNTIL Convergence DO —iiis (o3t T
DTIC T/ 2 ]
Unannounce.d O
(2¢) a, = (r ,x7) / (p,,Ap,) -;,./:
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(20) el T % T NP Distribut an/ ]
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(2e) r =1 - aAp VT e T
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(2f) Solve Mry . = r ., Hf ,
{ | |
(2g) b, - (rRQI’rk*l) / (rk'tk)
(2h) Pre1 * ,i#l + bkpk

The effect of the preconditioning matrix M is to increase the rate of
convergence of the basic conjugate gradient method of Hestenes and
Stiefel [11]). The number of multiply-adds per iteration is just 5N, plus the

number required to form Apk. plus the number required to solve Hr; = r.
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One widely used class of preconditionings are the incomplete Lot

factorizations
= ==1 ,~ .t
(3) M = (D+L) D ° (D+L)" ,

where A & L+D+Lt, L is strictly lower triangular, and D and D are positive
diagonal. This class includes the SSOR [9], Dupont-Kendall-Rachford [7], g
Generalized SSOR [1}, 1€CG(0) [13), and MICCG(0) [10] preconditiomings.
Letting NZ(A) denote the number of nonzero entries in the matrix A, a

straight-forward implementation of PCG with a preconditioning from this

classl would require 6N+2NZ(A) multiply-adds per itetation.2

In this brief note, we show how to reduce the work to 8N+NZ2(A)
multiply-adds, asymptotically half as many as the straight-forward
implementation.3 We give details in Section 2, and consider some

generalizations in Section 3.

2. Implementation

The linear system (1) can be restated in the form

1 Writing M as (5*L)(I#§-1Lt). we solve Hri = r, by solving the triangular

systems (5+L)tk o (145-1Lt)r; -t,.
2 2N (respectively, N) multiply-adds can be saved by symmetrically scaling

the problem to make D = I (respectively, D = I).

3 A similar speedup for pairs of linear iterative methods is given in (6].




(4) (D)L & (Be1)t) (D)t x) = [(Be1) ™) 1)
or
(5) Ax=b.

But applying PCG to (1) with M = (5+L)5_1(5+Lt) is equivalent to applying PCG
to (5) with M = 51 and setting x = (5+L)-t§.4 1f we update x instead of x i

at each iteration, algorithm (2) becomes: &

il

(6a) ﬁo =r, = b - Ax,

~ -~ 8
i (6b) Compute T = Drj ;
FOR k = 0 STEP 1 UNTIL Convergence DO #:
(6¢c) a = (r,,1p) / (pk’APk) i
~ -~ —tA
(64) Xeel = %t ak(D+L) Py g
|
(6e) Teel = T - 8,APL

H (6g) Compute x . = Dtk+1

4 i

Both are equivalent to applying the basic conjugate gradient method to

the preconditioned system

i3 e (5Y2(5e)7) & G155V 2] (57 2BeL)t x) = (DY 2B  B) @ B

(see (41: PP. 58-59).




4
! (6g) b = (rk+1’rk+1) / (rk,rk)
5 (6h) Prel = Tier * PPy
;
!
Xsk can be computed efficiently by taking advantage of the following
identity:
(1) Rp, = (Be0)7F [(Be1) ¢ (BoD)t - (25-D)) (Be)t B
= (o178, ¢ B+ 1P, - R(BeL) 7S, ]
where K @ 2D-D. Thus "1
l
-~ = - -t -~ ‘
(8a) ty (D+L) Py ’

(8)  Ap, = £ + (B (5, - KT ,

wvhich requires 2N+NZ(A) multiply-adds. Ek can also be used to update x in
(6d), so that the total cost for each PCG iteration is just BN+NZ(A)

multiply-adds,5 versus 6N+2NZ(A) for the straight-forward implementation.
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3. Generalizations

The approach presented in Section 2 extends immediately to

preconditionings of the form

5

Again, 3N multiply-adds can be saved by symmetrically scaling the problem

so that D = I.




(9)  m = (5er) 57} (o)t

vhere S is positive diagonal. Moreover, if we take K = p+Dt-D in (7) and
(8), then D need not be diagonal or even symmetric. In this case, D would
reflect changes to both the diagonal and off-diagonal entries of A in
generating an incomplete factorization. If we assume that only the nonzero
entries of A are changed, i.e., that (K)ij is nonzero only if (A)ij is

nonzero, then the operation count is 7N+NZ(A)+NZ(K).
Another application is to preconditioning nonsymmetric systems. Let
(10) M = (5e1) §7F (Be1)

be an incomplete LDU factorization of a nonsymmetric matrix A, where

A wm L+D+U, L (respectively, U) is strictly lower (respectively, upper)
triangular, and D and S are diagonal. Then a number of authors have proposed
solving the linear system Ax = b by solving the normal equations for one of

the preconditioned systems
(11a) A% @ (5 (Ben)™ a4 (Bow)™h) 1(Bo0) x] = 15 (Ben)™! B) @ B

(see [12]) and
(11b) A2
(see [14, 3]). 325 can be computed as

1) Ap - (B+0)71 § (p + (Ber) 1 (Deu-B)p)

in 4N+NZ(L)+28Z(U) multiply-adds, whereas 315 can be computed as

—
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(13a) ¢ = (Bet)7Yp

-~ ~

(138) Kp =518+ G0t 3 - (2D-D)E))

in 4N+NZ(L)+NZ(U) multiply-adds. Thus the first approach would be more
efficient per iteration, although more iterations might be required to

achieve comparable accuracy [14].6
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